<p id="nxp5x"><big id="nxp5x"><noframes id="nxp5x">

    <var id="nxp5x"><video id="nxp5x"></video></var>

          <em id="nxp5x"></em>

              首 頁 本刊概況 出 版 人 發行統計 在線訂閱 歡迎投稿 市場分析 1 組織交流 1 關于我們
             
            1
               通信短波
            1
               新品之窗
            1
               優秀論文
            1
               通信趨勢
            1
               特別企劃
            1
               運營商動態
            1
               技術前沿
            1
               市場聚焦
            1
               通信視點
            1
               信息化論壇
            1
            當前位置:首頁 > 優秀論文
            A Nonlinear Denoising Method with Dual Assessment Criterion
            作者:Zongbo Xie*1, and Jiuchao Feng2
            來源:本站原創
            更新時間:2014/1/16 10:46:00
            正文:

            1 School of Electronic and Information Engineering, South China University of Technology, Guangzhou, 510641, China

            2 School of Electronic and Information Engineering, South China University of Technology, Guangzhou, 510641, China


                                                                         Abstract

             This paper presents a nonlinear method---total variation denoising (TVD) method, for impulse signals denoising. The basic idea of TVD is to solve a total variation function optimization problem. Experimental results suggest that the mean squared error (MSE) can not distinguish the results with some falsely identified impulses. Thus, a dual assessment criterion incorporating both MSE and false identification power (fid) is proposed. Numerical experiments have shown that the proposed approach outperforms the traditional wavelet denoising (WD) by using the dual assessment criterion.

            Keyword: Denoise; total variation; impulse signals.

             

             

             


                                                          References

            1. Y. S. Fan, and G. T. Zheng, “Research of high-resolution vibration signal detection technique and application to mechanical fault diagnosis,” Mechanical Systems and Signal Processing, 21, 2007, pp. 678-687. 

            2. S. Chen, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Transactions on Image Processing, 9, 2000, pp. 1532-1546. 
            .

            3. S. Chen, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Transactions on Image Processing, 9, 2000, pp. 1522-1531.  

            4. J. Lin, M. Zuo, and K. Fyfe, “Mechanical fault detection based on the wavelet denoising technique,” ASME Journal of Vibration and Acoustics, 126, 2004, pp. 9-16. 

            5. A. Hyvarinen, “Sparse code shrinkage denoising of non-Gaussian data by maximum likelihood estimation,” Neural Computation, 11, 1999, pp. 739-1768.

            6. Q. Xu, and Z. Li, “Recognition of wear mode using multi-variable synthesis approach based on wavelet packet and improved three-line method,” Mechanical Systems and Signal Processing, 21, 2007, pp. 3146-3166.

            7. H. Hong, and M. Liang, “K-Hybrid: A kurtosis-based hybrid thresholding method for mechanical signal denoising,” Transactions of the ASME, 129, 2007, pp. 458-470.

            8. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D, 60, 1992, pp. 259-268. 

            9. D. C. Dobson, and C. R. Vogel, “Convergence of an iterative method for total variation denoising,” SIAM Journal on Numerical Analysis, 34, 1997, pp. 1779-1791.

            10. Z. Xie, and J. Feng, “Blind source separation of continuous-time chaotic signals based on fast random search algorithm,” IEEE Transactions on Circuits and Systems II: Express Briefs, 57, 2010, pp. 461-465.

            11.  J. Nocedal, “Updating Quasi-Newton Matrices with Limited Storage,” Mathematics of Computation, 35, 1980, pp. 773-782.

            12. D. C. Liu, and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Mathematical Programming, 45, 1989, pp. 503-528.

            13. M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software Algorithms, New York, A.K. Peters, 1994.

            作者簡介: 

                 謝宗伯,博士,華南理工大學副研究員,IEEE/IEICE會員,主要研究方向為信號處理與機器學習。先后主持國家和省部級項目多項,在國際高水平期刊發表論文多篇。

               馮久超,教授,博導,華南理工大學教授,IEEE會員,廣東省“珠江學者”特聘教授,主要研究方向為非線性系統理論。

             

             
             
               
            《通信市場》 中國·北京·復興路49號通信市場(100036) 點擊查看具體位置
            電話:86-10-6820 7724, 6820 7726
            京ICP備05037146號-8
            建議使用 Microsoft IE4.0 以上版本 800*600瀏覽 如果您有什么建議和意見請與管理員聯系
            欧美成人观看免费全部欧美老妇0