<p id="nxp5x"><big id="nxp5x"><noframes id="nxp5x">

    <var id="nxp5x"><video id="nxp5x"></video></var>

          <em id="nxp5x"></em>

              首 頁 本刊概況 出 版 人 發行統計 在線訂閱 歡迎投稿 市場分析 1 組織交流 1 關于我們
             
            1
               通信短波
            1
               新品之窗
            1
               優秀論文
            1
               通信趨勢
            1
               特別企劃
            1
               運營商動態
            1
               技術前沿
            1
               市場聚焦
            1
               通信視點
            1
               信息化論壇
            1
            當前位置:首頁 > 優秀論文
            微博意見領袖影響力與話題時序模式研究
            作者:王濤1 王忠振2
            來源:本站原創
            更新時間:2014/1/14 10:05:00
            正文:

            (1.國防科技大學計算機學院,湖南省長沙市 4100001;2.國防科技大學計算機學院,湖南省長沙410000)

            摘  要  隨著信息技術的發展,互聯網數據以及電子數據急劇增長。微博作為一種新型的社會媒介,近幾年得到迅速發展,微博為影響力的研究提供了新的傳播平臺。微博用戶數量急劇增長,微博用戶的興趣演化快,話題演化速度快,因此亟需能在海量,異變的信息數據中,迅速分析、研判話題趨勢的方法。本文通過分析意見領袖在話題層次上的時間序列與話題的時間序列的關系,發現了它們之間的相關性,從而預測話題時序模式的變化規律。
            關鍵詞 微博;意見領袖;時序模式;話題;趨勢分析
            中圖分類號:TP393.08     文獻標識碼:A        文章編號:

                                                Research Microblogging Opinion Leaders Influence

                                                                    and Topics Timing Mode

                                                             WANG Tao1  WANG Zhong Zhen2
             。1.National University of Defense Technology,Changsha 410000,china. WANG Tao,631570216@qq.com
              2.National University of Defense Technology,Changsha 410000,china. WANG Zhong Zhen,54696661@qq.com)
            Abstract  With the development of information technology, the Internet data and information growth so fast . Microblogging as a new type of social media in recent years has been the rapid development . Microblogging provides a new communication platform for influential study. Because of Sharp increase in the number of users and fast evolution of the user's interest, the topic evolved fast, so we are badly in need of quickly analyze for E Byte and mutation of information data to analyzing the topic trends approach. This paper analyzes the topic level opinion leaders in the time series with the topic of the relationship and found the correlation between them in order to predict the variation of timing mode topic.
            Key words  microblogs; Opinion Leaders ; time-series pattern; Topic; trend analysis

             

             

             

            參 考 文 獻
              [1] Rogers E.M. & Cartano D.G. Methods of Measuring Opinion Leadership. Public Opinion Quarterly, 1962(26.Fall):435-441.
              [2] Katz E,&Lzzarsfeld .P.F. personal influencd.Ner York:The Free Press[J]. 1955.
              [3] Bass,Frank M.,A New Product Growth Model for Consumer Durable,Management Science,1969,15(5):pp215-227
              [4] Kempe D,Kleinberg J,Tardos E.Maximizing the spread of influence through a social network[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(SIGKDD 2003),Washington,DC,USA,2003.New York,NY,USA:ACM,2003:137-146
              [5] Gruhl D,Guha R,Liben-Nowell D,Tomkins A.Information diffusion through blog space.In:Proc.of the 13th Int’l Conf. on World Wide Web(WWW 2004).New York,2004.491-501.[doi:10.1145/988672.988739]
              [6] Java A, Song X, Finin T, et al. Why we twitter: Understanding microblogging usage and communities [C] //Proc of the 9th WebKDD and 1st SNA-KDD Workshop on Web Mining and Social Network Analysis (WebKDD/SNA-KDD’07). New York: ACM, 2007: 56–65
              [7] Yang X, Ghoting A, Ruan Y. A framework for summarizing and analyzing Twitter feeds [C] //Proc of the 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining (KDD’12). New York: ACM, 2012: 370–378
              [8] Eytan Bakshy et L.,Everyone’s an Influencer:Quantifying Influence on Twitter[C].WSDM 2011.67-69
              [9] J.M.Kleinberg.Authoritative sources in a hyperlinked environment.In SODA’98:Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms.1998.668-677
              [10] Brin S,Page L.The anatomy of a large_scale hypertextual Web search engine[J].In: Thistlewaite P,et al.,eds. Proceedings of the 7th  ACM-WWW International Conference. Brisbane: ACM Press,1998.107-117.
              [11] Jianshu Weng et al,. Twitterrank: Finding topic-sensitive influential twitterers[C]. WSDM 2010. 7-9.
              [12] 劉耀庭. 社交網絡結構研究[D]. 杭州:浙江大學,2008. 6 .(Liuyao Ting .Social Network Structure of Research [D] Hangzhou: Zhejiang University, 2008.6.)
              [13] Tunkelang D. A Twitter analog to PageRank [EB/OL]. (2009-01-13)[2013-07-23].http://thenoisychannel.com/2009/01/13/a_twitter_analog_to_pagerank.
              [14] Weng J, Lim E P, Jiang J, et al. TwitterRank: Finding topic-sensitive influential twitterers [C] //Proc of the 3rd ACM Int Conf on Web Search and Data Mining (WSDM’10). New York: ACM, 2010: 261–270.
              [15] Meeyoung Cha et al., Measuring User Influence in Twitter: TheMillion Follower Fallacy[C]. AAAI 2010. 11-13.
              [16] N.Agarwal, H.Liu,L.Tang, and P.S. Yu. Identifying the influential bloggers in a community. In Proceedings of ACM WSDM Conf.,2008
              [17] Yang Z, Guo J, Cai K, et al. Understanding retweeting behaviors in social networks [C] //Proc of the 19th ACM Int Conf on Information and Knowledge Management (CIKM’10). New York: ACM, 2010: 1633–1636
              [18] Romero D M, Galuba W, Asur S, et al. Influence and passivity in social media [C] //Proc of the 20th Int Conf Companion on World Wide Web (WWW’11). New York: ACM, 2011: 113–114.
              [19] Weng J, Lim E P, Jiang J, et al. TwitterRank: Finding topic-sensitive influential twitterers [C] //Proc of the 3rd ACM Int Conf on Web Search and Data Mining (WSDM’10). New York: ACM, 2010: 261–270
              [20] Yuto Yamaguchi et al., TURank: Twitter User Ranking Based on User-Tweet Graph Analysis[C]. WISE 2010. 243-246.
              [21] Dietz L, Bickel S, Scheffer T. Unsupervised prediction of citation influences[C]//Proc of the 24th Int Conf on Machine Learning. New York:ACM,2007:233-240.
              [22] Liu L, Tang J, Han J, et al. Mining topic-level influence in heterogeneous networks [C] //Proc of the 19th ACM Int Conf on Information and Knowledge Management (CIKM’10). New York: ACM, 2010: 199–208

             

            作者簡介:
              王濤,男,1979年9月出生,河南長葛人,國防科學技術大學計算機學院計算機科學與技術專業工程碩士。主要研究方向為大數據挖掘、微博意見領袖和輿情控制。
              王忠振,男,1980年6月出生,北京人,國防科學技術大學計算機學院計算機科學與技術專業工程碩士。主要研究方向為大數據挖掘、微博意見領袖和輿情控制。

             
             
               
            《通信市場》 中國·北京·復興路49號通信市場(100036) 點擊查看具體位置
            電話:86-10-6820 7724, 6820 7726
            京ICP備05037146號-8
            建議使用 Microsoft IE4.0 以上版本 800*600瀏覽 如果您有什么建議和意見請與管理員聯系
            欧美成人观看免费全部欧美老妇0