(1.北京郵電大學計算機學院,北京 100876 2. 北京郵電大學理學院,北京 100876)
摘 要 數字圖像的篡改檢測技術主要分為主動篡改檢測技術和被動篡改檢測技術。一般情況下,大部分的圖像是不知道其來源以及真實性,所以被動篡改檢測技術成為了主要的檢測技術。圖像特征主要包括其顏色特征、紋理特征和幾何形狀特征。針對這三種特征的數字圖像的盲篡改檢測的方法是本文所要論述的,最后對其進行總結。
關鍵字 盲篡改檢測;圖像特征;顏色;紋理;幾何形狀
Blind Tampering Detection Technology Based on Digital Image Features
Yanli HUANG1 Shaozhang NIU 1 Xiaoting SUN2
(1. School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China)
Abstract Digital image tampering detection technology mainly was divided into active tampering detection technology and passive tampering detection technology. In generally, as the sources of most of images mostly are unknown, including authenticity, the passive forgery detection method became the primary detection technology. Image features primarily contain color, texture, and geometric shape features. For the three features, this paper describes the method of blind tampering detection, and then concludes these.
Key words Blind Forgery Detection; Image Features; Color; Texture ;Geometric Shape
參考文獻
[1] 吳瓊,李國輝. 面向真實性鑒別的數字圖像盲取證技術綜述[J]. 自動化學報,2008.12(34):1458-1466
[2] 徐孟春,王相海.基于不完全小波樹型結構的圖像紋理特征研究[J]. 中國圖象圖形學報,2009.7(14):1341-1346
[3] 陳澤賓. 基于形狀特征的圖像檢索研究. 東南大學碩士學位論文
[4] 劉婷婷. 基于顏色亮度特征的圖像Hash技術. 上海大學碩士學位論文
[5] 趙琰,周俊杰. 基于顏色特征的圖像摘要算法[J]. 上海電力學院學報,2010.5(26):489-492
[6] 歐佳佳,蔡碧野,熊兵,李峰. 基于灰度共生矩的圖像區域復制篡改檢測[J]. 計算機應用,2011.6(31):1628-1630
[7] 劉曉霞,李峰,熊 兵. 基于韋伯局部特征的圖像拼接檢測[J]. 計算機工程與應用,2013,49(12):140-143
[8] 池靜,張婷,楊振宇. 基于SIFT和區域生長的圖像復制粘貼盲檢測算法[J]. 科學技術與工程,2013,13(4):917-920
[9] T.Ying.Kuo, Y.C.Lo, S.N.Huang. Image Forgery Detection for Region Duplication Tampering. National science Council
[10] S. Bayram, H.T. Sencar, and N. Memon,"An efficient and robust method for detecting copy-move forgery", Proc. IEEE ICASSP09, pp.1053-1056,2009
[11] Haralick R, Shanmugam K, Dinstein I, Texture feature for image classification[J]. IEEE Transactions System, Man, and Cybernetics,1973, 3(6): 610-623
[12] Z.Mohamadian, A.A.Pouyan, ”Detection of Duplication Forgery in Digital Images in Uniform and Non-Uniform Regions,” IEEE Computer Society(UKSim), p.455-460,2013
[13] Yan Zhao, Shuozhong Wang, Xinpeng Zhang, Heng Yao. Robust Hashing for Image Authentication Using Zernike Moments and Local Features. IEEE Transactions on Information Forensics and Security,2013,8(1):55-63
[14] Ghulam Muhammad. Multi-Scale Local Texture Descriptor for Image Forgery Detection. IEEE,2013
[15] G. Muhammad and M. S. Hossain, “Robust Copy-Move Image Forgery Detection using Undecimated Wavelets and Zernike Moments,” ACM Third International Conference on Internet Multimedia Computing and Service (ICIMCS), p. 95-98, 2011
[16] Ghulam Muhammad,Muhammad Hussain,Anwar M. Mirza,George Bebis. Dyadic Wavelets and DCT Based Blind Copy-Move Image Forgery Detection.
[17] Le Zhong,Weihong Xu. A Robust Image Copy-Move Forgery Detection Based on Mixed Moments. IEEE,2013