<p id="nxp5x"><big id="nxp5x"><noframes id="nxp5x">

    <var id="nxp5x"><video id="nxp5x"></video></var>

          <em id="nxp5x"></em>

              首 頁 本刊概況 出 版 人 發行統計 在線訂閱 歡迎投稿 市場分析 1 組織交流 1 關于我們
             
            1
               通信短波
            1
               新品之窗
            1
               優秀論文
            1
               通信趨勢
            1
               特別企劃
            1
               運營商動態
            1
               技術前沿
            1
               市場聚焦
            1
               通信視點
            1
               信息化論壇
            1
            當前位置:首頁 > 優秀論文
            A Lyapunov Equation Based Approach for Asymptotic Stability Analysis of Uncertain Dynamical Systems
            作者:MENG Lin
            來源:本站原創
            更新時間:2013/9/18 9:26:00
            正文:

              School of Mathematics and Systems Science, Beijing University of Aeronautics and       Astronautics, Beijing, 100191, China. Contact person: Meng Lin,

            Abstract: We in this paper provide a real root classification based approach for asymptotic stability analysis of uncertain polynomial dynamical systems. We start from linearizing an uncertain polynomial dynamical system and then formulate the asymptotic stability problem of its equilibria as a semi-algebraic system, which consists of the equilibrium equations, the Lyapunov equation and certain inequalities used for checking the positive-definiteness of a matrix. Afterward, with real root classification, we obtain a sufficient condition, which is a set of analytic inequalities on the parameters, for the system to have the prescribed number of asymptotically stable equilibria. Finally, some experimental examples are used to demonstrate the feasibility of this approach.
            Key words: asymptotic stability; Lyapunov equation; semi-algebraic systems; real root classification

             

             

            References
            [1]P. Lancaster and M. Tismenetsky, The Theory of Matrices: With Applications. London: Academic Press, 1985.
            [2]S. G. Nersesov and W. M. Haddad, “On the stability and control of nonlinear dynamical systems via vector Lyapunov functions,” IEEE TRANSACTIONS ON AUTOMATIC CONTROL, vol. 51, pp. 203–15, 2006.
            [3]Z. She, B. Xia, X. Rong, and Z. Zheng, “A semi-algebraic approach for asymptotic stability analysis,” Nonlinear Analysis: Hybrid Systems, vol. 3, pp. 588–596, 2009.
            [4]Z. She, B. Xue, and Z. Zheng, “Algebraic analysis on asymptotic stability of continuous dynamical systems,” in Proceedings of the 36th international symposium on Symbolicand algebraic computation, 2011.
            [5]Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics, 1994.
            [6]P. A. Parrilo, “Structured semidefinite programs and semialgebraic geometry methods in robust and optimization,” Ph.D. dissertation, Technology California Institute of Pasadena, CA, 1994.
            [7]G. E. Collins and H. Hong, “Partial cylindrical algebraic decomposition for quantifier elimination,” Journal of Symbolic Computation, vol. 12, pp. 299–328, 1991.
            [8]P. Aubry, D. Lazard, and M. M. Maza, “On the theories of triangular sets,” Journal of Symbolic Computation, vol. 28, pp. 105–124, 1999.
            [9]L. Yang and B. Xia, “Real solution classification for parametric semi-algebraic systems,” Algorithmic Algebra and Logic, vol. Proceedings of the A3L, pp. 281–289, 2005.
            [10]C. W. Brown, “Qepcad b: A program for computing with semi-algebraic sets using cads,” SIGSAM BULLETIN, vol. 37, pp. 97–108, 2003.
            [11]Dolzmann and T. Sturm, “Redlog: Computer algebra meets computer logic,” ACM SIGSAM Bulletin, vol. 24, pp. 209–231, 1997.
            [12]Xia, “Discoverer: A tool for solving semi-algebraic systems,” ACM SIGSAM Bulletin, vol. 41, pp. 102–103, 2007.
            [13]Wang and B. Xia, “Stability analysis of biological systems with real solution classification,” in Proceedings of the 2005 international symposium on Symbolic and algebraic computation, 2005, pp. 354–361.
            [14]W. Niu and D. Wang, “Algebraic analysis of stability and bifurcation of a self-assembling micelle system,” Applied Mathematics and Computation, vol. 219, pp. 108–121, 2012.
            [15]T. Sturm, A. Weber, E. O. Abdel-Rahman, and M. E. Kahoui, “Investigating algebraic and logical algorithms to solve hopfbifurcation problems in algebraic biology,” MATHEMATICSIN COMPUTER SCIENCE, vol. 2, pp. 493–515, 2009.
            [16]H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2010.
            [17]Lyapunov, Stability of Motion. New York, London: Academic Press, 1966.
            [18]S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory. New York: Springer, 1982.
            [19]M. E. Kahouia and A. Weber, “Deciding hopf bifurcation byquantifier elimination in a software-component architecture,” Journal of Symbolic Computation, vol. 30, pp. 161–179, 2000.

             

            作者簡介:孟琳,女,漢族,山東淄博人,現就讀于北京航空航天大學系統與科學學院,2011級學生,碩士研究生在讀,方向為動力系統;本科就讀于北京科技大學數理學院,信息與計算科學專業。
              

             
             
               
            《通信市場》 中國·北京·復興路49號通信市場(100036) 點擊查看具體位置
            電話:86-10-6820 7724, 6820 7726
            京ICP備05037146號-8
            建議使用 Microsoft IE4.0 以上版本 800*600瀏覽 如果您有什么建議和意見請與管理員聯系
            欧美成人观看免费全部欧美老妇0