<p id="nxp5x"><big id="nxp5x"><noframes id="nxp5x">

    <var id="nxp5x"><video id="nxp5x"></video></var>

          <em id="nxp5x"></em>

              首 頁 本刊概況 出 版 人 發行統計 在線訂閱 歡迎投稿 市場分析 1 組織交流 1 關于我們
             
            1
               通信短波
            1
               新品之窗
            1
               優秀論文
            1
               通信趨勢
            1
               特別企劃
            1
               運營商動態
            1
               技術前沿
            1
               市場聚焦
            1
               通信視點
            1
               信息化論壇
            1
            當前位置:首頁 > 優秀論文
            基于共生矩陣的電子商務交易日志異常檢測
            作者:全擁1,李樹棟1,2,賈焰1,韓偉紅1
            來源:本站原創
            更新時間:2013/9/17 11:26:00
            正文:

            (1.國防科學技術大學 計算機學院,湖南 長沙 410073;2.山東工商學院 數學與信息科學學院,山東煙臺 264005)
            摘 要:針對電子商務中用戶交易行為合法與否的問題,提出了一種基于共生矩陣的異常檢測算法。該算法利用共生矩陣對用戶的交易行為建模,通過PCA方法建立共生矩陣空間,從而得到用戶正常交易模式。在檢測階段,對待測數據產生的共生矩陣進行了修正并獲取用戶的交易模式,通過矩陣2-范數計算用戶交易模式和其正常模式之間的距離并以此來判斷用戶的交易行為是否異常。實驗表明,相比于其它的幾種方法,本文的方法具有更高的檢測性能。
            關鍵詞:異常檢測;用戶行為;電子商務;共生矩陣;PCA
            Anomaly Detection on E-commerce Transactions Log
            based on Co-occurrence Matrix
            QUAN Yong1, LI Shu-dong1,2, JIA Yan1, HAN Wei-hong1
            (1.School of Computer Science and Technology, National University of Defense Technology,
            Changsha 410073, China
            2.College of Mathematics and Information Science, Shandong Institute of Business and Technology,
            Shandong 264005, China)
            Abstract: In order to determine whether the user behavior is normal or not in e-commerce transactions, an algorithm of anomaly detection based on co-occurrence matrix was presented. It accurately modeled user behavior with using co-occurrence matrix, and established the co-occurrence matrix space to obtain profiles of the normal user behavior through the method of principal component analysis. In the detection phase, it acquired the trading patterns of the user in the audit data which converted to the revised co-occurrence matrix, and then to exactly classify the user behavior as normal or malicious by measuring the distance between the patterns and profile employing the second matrix norm. Compared to several other methods, the experiment results show that the proposed method has a higher performance.
            Key words: anomaly detection; user behavior; electronic commerce; co-occurrence matrix; PCA

             

             

            參考文獻:
            [1] AGYEMANG, M., BARKER, K., ALHAJJ, R. A compreh- ensive survey of numeric and symbolic outlier mining techniques[J]. Intel. Data Anal. 2006. 10(6): 521–538.
            [2] 李超,田新廣,肖喜,等. 基于Shell命令共生矩陣的用戶行為異常檢測方法[J]. 計算機研究與發展. 2012. 49(9): 1982—1990.
             LI CHAO, TIAN XINGUANG, XIAO XI, et al. Anomaly detection of user behavior based on shell commands and co-occurrence matrix[J]. Journal of Computer Research and Development. 2012. 49(9): 1982—1990.
            [3] SUN, P., CHAWLA, S., ARUNASALAM, B. Mining for outliers in sequential databases[C]. In Proceedings of the SIAM International Conference on Data Mining. 2006.
            [4] CHANDOLA, V., BORIAH, S., KUMAR, V. UnderStand- ing categorical similarity measures for outlier detection[R]. Tech. rep. 2008. 08-008, University of Minnesota.
            [5] DONOHO, S. Early detection of insider trading in option markets[C]. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2004. ACM Press, 420–429.
            [6] CHANDOLA, V., BANERJEE, A., KUMAR, V. Anomaly Detection:A survey[J]. ACM Computing Surveys. 2009. 41(3): 15-58.
            [7] OTEY, M., PARTHASARATHY, S., GHOTING, A., et al. Towards NIC-based intrusion detection[C]. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2003. ACM Press, 723–728.
            [8] OTEY, M. E., GHOTING, A., PARTHASARATHY, S. Fast distributed outlier detection in mixed-attribute data sets[J]. Data Mining and Knowledge Discovery. 2006. 12, 2-3, 203–228.
            [9] JHA, S., TAN., K.M.C.,MAXION, R.A. Markov Chains, Classifiers and Intrusion Detection[C]. In Proc. of 14th IEEE Computer Security Foundations Workshop. 2001. 206–219
            [10] WARRENDER, C., FORREST, S., PEARLMUTTER, B.  Detecting intrusions using system calls: alternative data models[J]. In 1999 IEEE Symposium on Security and Privacy, IEEE Computer Society. 1999. p: 133–145.
            [11] DAS, K. SCHNEIDER, J. Detecting anomalous records in categorical datasets[C]. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2007. ACM Press.
            [12] DUMOUCHEL, W. Computer Intrusion Detection Based on Bayes Factors for Comparing Command Transition Probabilities[J]. Technical Report TR91, National Institute of Statistical Sciences (NISS). 1999. 
            [13] OKA, M., OYAMA, Y., ABE, H., ET A1. 2004. Anomaly detection using layered networks based on eigen co-occurrence matrix[G]//LNCS 3224. Berlin:Springer, 223—237
            [14] LAKHINA, A., CROVELLA, M., AND DIOT, C. Mining anomalies using traffic feature distributions[C]. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. ACM Press, 2005. 217–228.

            基金項目:國家高技術研究發展計劃(2012AA01A401);國家自然科學基金(61202362,61262057)

             

            作者簡介:
            全 擁,1988年生,男,湖南常德人,國防科大在讀研究生,主要研究方向數據挖掘與信息安全。

             
             
               
            《通信市場》 中國·北京·復興路49號通信市場(100036) 點擊查看具體位置
            電話:86-10-6820 7724, 6820 7726
            京ICP備05037146號-8
            建議使用 Microsoft IE4.0 以上版本 800*600瀏覽 如果您有什么建議和意見請與管理員聯系
            欧美成人观看免费全部欧美老妇0