<p id="nxp5x"><big id="nxp5x"><noframes id="nxp5x">

    <var id="nxp5x"><video id="nxp5x"></video></var>

          <em id="nxp5x"></em>

              首 頁 本刊概況 出 版 人 發行統計 在線訂閱 歡迎投稿 市場分析 1 組織交流 1 關于我們
             
            1
               通信短波
            1
               新品之窗
            1
               優秀論文
            1
               通信趨勢
            1
               特別企劃
            1
               運營商動態
            1
               技術前沿
            1
               市場聚焦
            1
               通信視點
            1
               信息化論壇
            1
            當前位置:首頁 > 優秀論文
            A new type of Echo State Network based on nonlinear readout nodes
            作者:WU Ri-na YANG Ling WANG Fang
            來源:本站原創
            更新時間:2014/3/13 10:40:00
            正文:


            1. School of Information Science and Engineering, Lanzhou University, Lanzhou,730000,China

                             2. Inner Mongolia Regional Training Base of CAPF, Hohhot, 010070, China

                                      Contacts: Wu Ri-na, e-mail: wurina820109@sohu.com

             

            Abstract: The classical Echo state network (ESN) cannot fully exploit its advantages in some work which characterize strong nonlinearity and high-order statistics. In order to overcome the shortcomings, this paper using the nonlinear readout nodes instead of the traditional linear readout nodes in classical ESN, Radical Basis Function (RBF) neural network was introduced to read out the reservoir state. Benchmark experiments on Lorenz chaotic time series and NARMA model identification shown that the proposed new type of ESN can improve the nonlinear characteristics and it’s performance exceeded the classical ESN in dealing with some higher degree of nonlinear system and model.

            Keywords: Echo state network; linear regression; nonlinear readout; RBF;

             

             


             
            REFERENCES

            [1] Jaeger H. The "echo state" approach to analyzing and training recurrent neural network[R]. GMD Report 148,

            German Technical Report Centre for Information Technology, 2001.

            [2] Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless

            telecommunication[J]. Science, 2004, 304(5667): 78-80.

            [3] Shi Zhiwei, Han Min. Support vector echo state machine for chaotic time-series prediction[J]. IEEE

            Transactions on neural networks, 2007, 18(2): 359-372.

            [4] Embrechts M, Alexandre L, Linton J. Reservoir computing for static pattern recognition[C]. 17th European

            Symposium on Artificial Neural Network(ESANN 2009), Amsterdam, Netherlands, 2009, 245-250.

            [5] Skowronski M D, Harris J G. Automatic speech recognition using a predictive echo state network classifier[J].

            210 Neural Networks, 2007, 20(3): 414-423.

            [6] Cernansky M, Tino P. Predictive modeling with echo state networks[C]. In Proceedings of the 18th International Conference on Artificial Neural Networks-ICANN, Prague, Czech Republic, September 3-6, 2008,778-787.

            [7] Jaeger H. Adaptive nonlinear system identification with echo state networks[C]. In Advances in Neural

            215 Information Processing Systems, 2002, 593-600.

            [8] Venayagamoorthy G K. Online design of an echo state network based wide area monitor for a multi-machine power system[J]. Neural Networks, 2007, 20 (3): 404-413.

            [9] Hartland C, Bredeche N, Sebag M. Memory-enhanced evolutionary robotics, The echo state network approach [C]. IEEE Congress on Evolutionary Computation, Trondheim, Norway, May 18-21, 2009, 2788-2795.

            [10]Mantas Lukoˇseviˇcius. Echo State Networks with Trained Feedbacks, Technical Report No. 4, February 2007.

            [11] Lukosevicius M, Jaeger H. Reservoir computing approaches to recurrent neural network training[J]. Computer Science Review, 2009, 3(3): 127-149.

            [12] Levy Boccato, Diogo C. Soriano, Romis Attux and Fernando Jos´e Von Zuben. Performance Analysis of Nonlinear Echo State Network Readouts in Signal Processing Tasks. WCCI 2012 IEEE World Congress on Computational Intelligence June, 10-15, 2012 - Brisbane, Australia.

            [13] ZHANG Dong-qing, NING Xuan-xi, LIU Xue-ni. On-line prediction of nonlinear time series using RBF neural networks. Control Theory & Applications, Vol. 26 No. 2 Feb. 2009:151-155.

            [14] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Westview Press, 2000.

            [15] PANG Shi-wei, YU Kai-ping, ZOU Jing-xiang. “Identifying nonlinear time-varying structural system based on NARMA model”. JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY, Vol.40 No 1,Jan. 2008:12-16.

             

            作者簡介:

            烏日娜,(1982-),碩士研究生,主要研究方向:通信系統智能信號處理。

             
             
               
            《通信市場》 中國·北京·復興路49號通信市場(100036) 點擊查看具體位置
            電話:86-10-6820 7724, 6820 7726
            京ICP備05037146號-8
            建議使用 Microsoft IE4.0 以上版本 800*600瀏覽 如果您有什么建議和意見請與管理員聯系
            欧美成人观看免费全部欧美老妇0,嫩草成人影视,国产成人亚洲日本,国产成人亚洲欧美在线观看